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Shear viscosity of an ordering latex suspension
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The shear viscosity of a latex which is ordered at rest is studied as a function of the shear rate and volume
fraction. At low shear rates and for moderate to high volume fractions, the flow curves show dynamic yield
behavior which disappears below a volume fraction of 8%. At high shear rates, the onset to the high shear rate
plateau of the viscosity can be observed. A new model for the shear viscosity for lattices at high volume
fractions is described. This model is based upon theories for the shear viscosity of dilute lattices of Blachford
et al.[J. Phys. CheniZ3, 1062(1969] and Russ€lJ. Fluid Mech.85, 673(1978]. In terms of this model, the
ordered latex is broken down under shear flow into ordered domains suspended in a disordered fluid. The larger
the shear rate, the smaller the volume fraction of ordered domains. The experimental results can be described
reasonably well with the model discussed hé81063-651X%97)12808-2

PACS numbeps): 82.70-y

[. INTRODUCTION Here a first attempt is made to describe the shear viscosity
for nondilute suspensions containing strongly interacting
The rheological behavior of charged colloidal particlesspheres by extrapolating the theories for dilute suspensions
dispersed in an electrolyte has been studied by many authomsentioned before to the high volume fraction regime. How-
over the past two decades. The shear viscosity of these disver, the microstructure of these suspensions in shear flow
persions depends strongly on the volume fraction and theeeds some extra consideration since for high volume frac-
excess electrolyte concentration. For dilute dispersions, th&ons and sufficient low excess electrolyte concentrations the
influence of the excess electrolyte concentration on the lowparticles order into crystalline lattices at rest. In shear flow,
shear limit of the viscosity has been studied intensively. Inthe system can be seen as a quasihomogeneous ‘“blend”
this respect, we can discriminate between three electrovidoermed by a solid phase coexisting with a fluid phase
cous effects which have been comprehensively treated byl1,12. If the shear rate is increased the number of disloca-
Russe[1-5] and Blachforcet al.[6] among others. The pri- tions or the amount of the disordered phase increases at the
mary effect is caused by the distortion of the diffuse doubleexpense of the ordered phase. How these ordered and disor-
layer of ions surrounding each particle. The secondary effeadered regions are organized is still an open question. Since it
is due to the electrostatic repulsion between the particleds impossible, due to multiple scattering, to perform light
The tertiary electroviscous effect, mentioned by Russel, iscattering experiments on polystyrene latices with high vol-
the influence of the intra-particle repulsions on the particleume fractions ¢>0.01), we were unable to obtain results in
shape. Since the colloidal dispersions studied in this workhis way on the microstructure of our own lattices. Other
consist of monodisperse charged polystyrene spheres ditechniques like x-ray scattering or neutron scattering do not
persed in water, the latter effects is of no interest here. Corsuffer from this problem but they are not easy to implement
sequently, only the primary and the secondary effect are lefin a viscometer. In order to envisage the microstructure of
as electroviscous contributions to the viscosity. These thecsheared lattices, we can use scattering experiments per-
ries have been compared to the viscosities measured Hgrmed by other investigators on similar systems in shear
Stone-Masui and Watillofi7] and Charet al. [8] for dilute  flow and numerical simulations performed on these disper-
suspensions. sions. The experimental data as well as the numerical results
The present paper studies the shear viscosity of a nond@do not reveal one picture of the microstructure of these sys-
lute suspension with strongly interacting particles. Earlietems in a shear flow. On the basis of light scattering experi-
experiments on this matter have been performed by Chements[11,13-193 and neutron scattering experimefis],
and Zukoski[9], Buscall[10], and Quemad@l2]. Theoreti-  Ackerson and Clark15] and Tomita and Van de Vei1]
cal models have been given, e.g., by BusEalll and Que- concluded that the flow forces the particles to order in hex-
mada[12]. These models are based on a semiempirical exagonal plates which lie parallel to the shear plane and slide
pression for the viscosity of hard-sphere suspensierg., over each other. Experiments of Imhef al. [17,18 and
Krieger-Dougherty formuladescribing the volume fraction Dozier and Chaikin[19] show that the colloidal crystal
dependency of the shear viscosity. The volume fraction irbreaks up into crystallites which are separated by disordered
this expression is replaced by an effective hard-sphere vomaterial. Here the crystallites gradually melt with increasing
ume fraction which depends on the electrostatic interactioshear rate and eventually the suspension becomes completely
between the particles. disordered. Also numerical results of Stevens and Robbins
[20] indicate a microstructure of solid crystal plates sepa-
rated by disordered material where the shear is concentrated.
*Corresponding author. In this paper, we model our fluid as an ordered suspension
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in which both the volume fraction of crystalline aggregates
¢ and the shear viscosity of the disordered phagele-

pend on the shear ratg applied to the suspension. These
two quantities will be considered in the next sections.
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L 2a A. Viscosity of the disordered phase

) For a dilute latex the electrostatic force is dominated by
FIG. 1. The polystyrene latex modeled as a suspension ofe Brownian force and no ordering will occur; also the low-
spherical aggregates of sike(crystallites in a fluid phase consist-  gpear viscosity will be dominated by Brownian interactions.
ing of disordered particles of sizea2 For a nondilute latex at rest the maximum separation
(~2a¢'®) of the particles is so small that the Brownian
which at rest consists of many crystallites separated by disorce on the particles is dominated by the electrostatic force
locations. If a shear is applied to this ordered suspension, thgausing the particles to order in a crystal. In flow, these or-
flow is most probably concentrated at the dislocation edgegered structures are broken down by hydrodynamic interac-
since the particles at these dislocations are more looseljons. Consequently in our investigations only the hydrody-
trapped by the potential field of the particle interactions. Thisnamic and electrostatic forces have been taken into account.
leads us to our working hypothesis that an at-rest ordering The shear viscosity of the disordered phase is calculated
dispersion in shear flow can be considered as a suspensionfém the electrostatic shear stress following Blachfetdl.
crystallites or domaingaggregatesof ordered material dis- [6] and Russe[2]. We start from the force balance on one
persed in a disordered fluid phageee Fig. 1 The conse- particle, omitting inertial effects since the time scale on
quences of this hypothesis on the shear rate dependence pfich these are important is much smaller than the diffusive
the viscosity are investigated in terms of a microrheologicaljme scale on which the equation is valid. The total electro-
model and compared with the experimental observations. qaiic force on a particle can be reduced to a summation of

This paper is organized as follows: In Sec. |l the mOde'the electrostatic pair interactions with its nearest neighbors

for the viscosity of a nondilute colloidal dispersion consist- . . < ihe Debye screening lengtt is smaller than one-
ing of strongly interacting particles is described. In Sec. I,

the dispersion and setup of the experiments are shortly dér_urd of the surface to surface distance between two particles

scribed. Finally, in Sec. IV the experimental and theoretical™ oY latex dlspersmnE’ZZ].. .
results are discussed. The electrostatic stress in the suspension can be calculated

by considering a “collision” between two particlésandk
in the suspension surrounded by many other particles. If the
Il. THEORY two particles are separated by one or more other particles,

the electrostatic interactiof,), , between the two particles is

Under shear we consider the fluid as a suspension whicfcreened and it is sufficient to take into account only elec-
consists of disordered materl_al in which the cryst.alhtes Ofrostatic interactions between nearest neighbi@g). If,
aggregates of ordered material are susperded Fig. 1 the dist betw the t fickes. b
Increasing the shear rate causes the aggregates to becoPf¥Vever. the distance between the two partictes, be-

smaller in favor of the disordered material that separates the?Mes on the order 15’3‘,: the interparticle distaRgg, which is
crystallites. The flow is concentrated in the disordered o@PProximately 2¢~ 77, or less, they do interact, which will
fluidlike phase if the penetration depth of the flow field into contribute to the stress in the suspension. Averagifg;,
the ordered aggregates is small compared to thelsiadethe  along the collision path and over all possible initial configu-
aggregates. According to Wieggl1] the penetration depth rations results in the electrostatic contribution to the stress in
of the flow field into an aggregate is maximal the suspension. To calculate the trajectory of pariickhen
Amax=V770/(£0C). Here 7 is the viscosity of the solvent, i ¢ojliges with particlek the total electrostatic forcE! on
{o is Stokes’ friction coefficient @ »nga for a free particle, L -
andC=3¢/(47a%) is the particle number concentratiom; particlei is modeled as the sum of the AforE@(rik) due to
is the radius of a particle. In our case the maximal penetraparticlek and an average contributidf,r;, from the other
tion depth of the flow field into the aggregates is approxi-nearest neighbor particles
mately 100 nm which is more than five times smaller than R R N
the interparticle distance in the lattice so the aggregates are Fi=[Fi(ri) —Falr i 2
considered as impenetrable.

Conceiving the aggregates as hard spheres, the total shear

viscosity of the suspension(y) can be modeled with the with Fik=Fik/rik. F, is determined from the equilibrium
Krieger-Dougherty expression condition at rest
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Fa= > Rt =|Fi () 3 N
j=1j#i,j#k !

with r,2%=|r,%%-r 29. N, is the number of nearest neighbors
and Ifi'j is the electrostatic force on partidledue to particle
j. In a steady shear flow the force balance for particle

during a collision with particlé is under these assumptions Y
given by L\

EMLEI= 6, (4 ~ Y

whereO is the zero vector. The hydrodynamic foréé on
particlei is given by r

F=¢(vg—v)), ) X ' v,

wherev;=dr; /dt is the velocity of the particleyy the fluid

velocity atr;, and{ is the volume-fraction dependent fric-

tion factor of the particles. The friction factor is modeled by  FIG. 2. The collision between two charged polystyrene latex
) particles in a shear flow.

dae €,

3D, ka(1+ «a)?. (6)

2
{=6my(d)att the term in brackets represents the ratio between the electro-

static interaction force between the two particles and the hy-
The first term is due to the hydrodynamic friction of the latex drodynamic force upon the particles. A spherical coordinate
particle in a dispersion of hard spheres. The viscosity in thigystem has been used in which the origin coincides with the
expression is calculated from the Krieger-Dougherty equacenter of mass of the two particlésee Fig. 2. The flow
tion: 7(#)=no(1— ¢/ py) >>*m. When a latex particle direction is along the axis while the gradient is directed
moves through its solvent, the layer of counterions exerts aglong they axis. This approach is similar to that of Blachford
additional drag force on the particle. This electrodynamicet al. [6] except for a little difference in the coordinate sys-
friction is taken into account by the second term in B8).  tem. The trajectories of both particles can be calculated by
This term is the low frequency limit of the electrodynamic numerical integration of Eq(8) using a Runge-Kutta inte-
friction coefficient{¢(w) as derived by Felderhof and Jones gration scheme.
[23]. @, is the apparent surface potential ands the effec- We are interested in theheay stress componerdt,, gen-
tive reciprocal Debye length. Both can be calculated fromerated by all the colliding pairs. The contribution of the elec-
the cell model described by Van der Voedtal.[22]; €,€, IS trostatic interaction to this stress component can be calcu-
the dielectric constant of the fluid. The only counterions injated with[24]
our model fluid are H ions which have a diffusion constant
D;=9.5x10"°m?s ! and a valence=1. The factorf is a A
fit parameter of our model. It is an unknown parameter on Tyz(t):f f f (ayF)®(q,t;p,7) d®p dq dr. (9)
the order of unity with which deviations might be corrected
stemming from deformations of the spherical double layer o
pollution with less mobile iongNa™ or K*). The electro-
static force between the two particles is modeled with th
expression used by Van der Voettal.[22] to describe the

'D(q,t;p,7) d®p d®q dr is defined as the number density of

eoairs at timet with a connection vector im®q aroundq
which were created between r—dr andt— 7 with a con-

static shear modulus nection vector ind®p around 5 Assuming a steady state
situation, the only time dependence is the lifetime of a con-
L 2kr+1 . nection. The distributionb can be written as a product of
Fi'k(r)=47rereod)ﬁ(Ka)zez“"We‘z”er (7)  three contributions

with 2r the center to center distance between the two par-  P(a.t;p,7) d*p d®q dr={n. d*p dTH{Psyn(p.7)}
ticles. Substitution of Eqg5) and(7) in Eq. (4) leads to the > > 3
following trajectory equation: X{Prand@;p,7) d°a}. (10

dy & H {Y+1 oy Yo+l ng dp dris the *number density of pairs creaated in a vol-
9 1+§2+ sin¢>0\ V2 e - V2 e "l (8  umed3p aroundp within a period d7. Psundp,7) is the
survival probability of a pair created ptafter a periodr and
with Y= 2«r the dimensionless distance of the particle to thePtrans((i;ﬁ,r) is the probability that a pair created biFp

center of the cell,Yo=«Req the equilibrium distance, aroundp translates tal®q aroundq during a period of time
H=[4me eP2(ka)?e**2k]/({y) and é=coth. H times 7, given it still exists. The number of created connections is
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determined by the number of particles flowing into a spherghe breakup energy per unit area needed to create a free
with radiusR¢q around the central particle: surface in the crystallite, arélis the created free surface. In
this expression, it is not directly clear hdw depends on the
crystal properties. However, an expression for this energy
can be found by identifying the energy needed to create a
i free surface in a crystallite with the energy needed to excite
Xsirfy dp df debo d7. (1D all the particles in this surface from their lattice sites to an
unbounded state. The energy to excite one particle can be
found from the melting criterion of Lindemar{26], which
states that ifd?)=a’RZ, where(d?) is the mean-squared
displacement of a particle from its lattice positian,is the
Lindemann factor andR., is the lattice parameter, the par-
ticle can no longer be considered as bounded to a lattice site.
The minimum energy needed to excite one particle to this
unbounded state is equal #ka?R%,, wherek=V2¥ with

V¥ the total interaction energy of the particle. In our case, this
melting energy is realized by both the Brownian energy

(3kgT/2) and the energy due to the shearing of the crystal. In

. 1 ..
N d3p dr=6(p— Reg n2yp3sing,cosdy

Hered3p is written asp?siné, d6, d¢, dp, n is the number
density of particles, and is the Dirac function. Because the
Brownian motion of the particles is omitted the trajectories
of the colliding particles are fully deterministic. By defining

F(f),r) as the pair vector which has been createﬁ attime
7 before, the translation probability can be written as

Puand G P, 7) = 8(q—2r(p,7)). (12)

The survival probability can be written as

: s this respect, the minimum energy which the shear flow has to
R 1 ifr<7/(p), LN ) .
Pound P, 7) = _ (13 provide in order to excite one particle to the unbounded state
0 ifr>71.(p), divided by the specific shear surface of one particle

. (=~7R2) becomes
where 7,(p) is the time elapsed when a pair which was

created with connection vectcp} is broken up. In this case k(azRé— dé)
7, is the time the interacting pair remains within a distance Es= T
Req from each other. By substitution of Eqd.1)—(13), and T er
(10) into (9) and carrying out the integration over thespace  \ith kd2=3KkgT. By substitution of Eq(16) in Eq. (15) with
and overp one deduces V~L?® and S~L?, the following breakup criterion can be
derived for a crystallite: no breakup occurs as long as

(16)

To=2 29(R 3Fd¢ fo dé Fmdg
MR G00) G0, 32 K(a?R—d)
=
2GoL 2mwR? a7
1Yy ¢ %o (1+ £2)5%sing) “
Y U o1+82) 1+ & ° °

In this way, the upperbound size of the crystallites in a shear
(14 flow is determined. The lower bound dn can be derived

from the coalescence of crystallites which is induced by the
with &,=cot6,, &,=cotd,,, and A=4wereo¢§(xa)2e2"a. shear flow. An expression for the minimum size of the crys-
The particle pair is created under an angdeat time7=0 on tallites below which they do not coalesce is derived by com-
the cell surfacel = kR¢q. After a timer, the pair breaks up paring the shear force and the lubrication force on two col-
at 0, with Y= kRqq again. The trajectory of the particle in liding aggregates

this equationY (&, ¢o), £(&o, b0, y7) is calculated from Eq. _ _
(8). 677'7]L2'y< 6Ly

=

4 l6h °

(18

B. The volume fraction of the ordered phase
In the proposed model. the ordered phase consists Vﬁhere the left-hand side of the equation represents the shear
prop ' P Frce on a spherical crystallite colliding with another sphere

fﬁ:?gf;l \%}’jﬁ?{!'tefhgfssi'zz: gr:?jt sgﬁ] L:ﬁg i;ﬁg;}orﬁ% Oc]iceterpf size L, and the right-hand side represents the repulsive
) : lubrication force along the connecting vector between two
mined by breakup and coalescence processes.

The breakup of crystallites is described with a criterionCryStaIIites with radiud./2 that approach each other with a

obtained from fracture mechanics. It states that a deforme¥elocity Ly [5]. The velocity difference between the disor-
crystal will break up when the elastic energy stored in thedered phase and a stationary aggregate is estimated as
deformed crystallite exceeds the energy needed to createlay/2; » is the shear viscosity of the total suspensigg,is

new free surface in the crystallif@5]: the viscosity of the disordered phase between the aggregates
and h is the surface to surface distance between the two
aggregates. The minimum distanleg;, is determined from

Eq. (18). If this distance is smaller than the average separa-
tion distance between the particles, all of the disordered
Here X is the shear stress in the cryst@, is the shear phase is squeezed out of the gap, the surfaces of the two
modulus of the crystal is the volume of a crystalliteE is ~ aggregates make contact and the two crystallites coalesce.

2

2
Z_GO V= ESS. (15)



56 SHEAR VISCOSITY OF AN ORDERING LATEX SUSPENSION 3123

The shear melting criteriofl7) together with the shear coa- First guess Tor 0 < oy < 97
lescence criterion18) determines the range of sizes for ‘ .
which the aggregates are stable at a certain aggregate volum (7 and ¢ are given)
fraction,
-
43R 2G, k(a?R%—d?)
Moo <220 o (19) e
Uil 32 27RE, o= 7(1—¢Ww> (1-6a)2
an = To(is 80
C. Numerical implementation (1 ber )—zsdzé';”
mo= ol -
Since the viscosity of the fluid phase is shear rate depen- & vor reduce increase
. - 112G, k(a®RY - dj)
dent, the average shear rate in the fluid phase has to b¢ |ur = R (s on ke . .
known. It can be calculated from the observation that the - = =
energy dissipation in the total suspension equals that in the :
fluid phase since no energy is dissipated in the hard-sphere e =aul far <1077 e no
aggregates: ar > ?
— (5/4) pm®*
’.)/ _:y n Vtot_:y 1 ber “ (1- ¢ )_1/2
=Y\ v = - - .
71 Vo o o

(20)
Here V,y is the suspension volume and; is the volume FIG. 3. Calculation scheme of(y).
occupied by the fluid phase. The last step is performed by
substitution of Eq.(1). In the stationary case the breakup
process is equilibrated by the coalescence of crystallites. We In the experimental part of this investigation, we used a
assume that the suspension adopts the maximum volunraonodisperse polystyrene latex which has been synthesized
fraction of aggregates and the inequality signs in B§)  following the method described by Goodwat al. [30]. A
have been replaced by equality signs. This results in a secormbmprehensive treatment of the synthesis of lattices has been
expression forp(y, ¢) given by Hearret al.[31]. The purification and characteriza-
tion of the samples have been described in detail by Van der
252 42 Vorstet al.[22]. Two batches of polystyrene latex have been
477R°’: 2(_30 k(a"Ro—do) (21)  used with the following characteristics: For latex | the par-
yii (ny)? Zngr ' ticle radius is 240 nm and the surface charge density is
—5.7 uClcm?; for latex Il the particle radius is 195 nm and

where 77'7 is substituted for the shear strasn the aggre- the surface charge density is4.6 uC/cm?. The electrolyte

gates. From Eqs(1), (14), (20), and (21) the suspension concentration of the latex dispersions used in our experi-

viscosity is calculated using a numerical scheme given ifnents has been reduced with an ion-exchange resirex-
Fig. 3. cess electrolyte was added to the dispersions after this reduc-

tion) and the electrolyte concentration is estimated to be 10

Begdes;a . the parhcle radius and _the surface charge uM [22]. The volume fractions of the studied latex disper-
density o the viscosity model contains the parameters’.

max : sions vary between 0.05 and 0.35.
¢cr s K, Go, do, Rer, Req, T, b, @, andny . The maximum The viscometric measurements on polystyrene lattices

packing fraction of crystallitespe,™ in Eq. (1) is chosen e peen performed on a Contraves LS 40 rheometer with a
equal to 0._71. This is the maximum pa_ckmg fraction derived.gncentric cylinder geometry, a vapor lock, and a guard ring.
from experiments on the shear viscosity of hard-sphere sug-q the geometry used the shear rate can be varied between

pensions at high shear rf‘/@yﬂ- The distanceR., is cho- 001 and 100 st and shear stresses can be measured within
sen equal to 0.9042a¢ 3, which is the distance in a fcc the range of 0.001 to 5 Pa.

lattice. The values fok andG,, which are both functions of
(¢, a, o, andny), are obtained from calculations described
by Van der Vorstet al. [22] and d3=3kgT/k. The Linde-
mann factora is estimated to be 0.2 which is close to the The measurements shown in Figs. 4 and 5 are averaged
range of experimental and theoretical results found for thiover at least three flow curves. These curves reproduced
factor[28,29. Besides byG, the viscosity of the fluid phase within 50%. The error bars shown in Fig. 4 for a volume
is determined by three parameteRg;, f, andé,,. Since the fraction of 0.155 are representative for the errors in the vis-
Peclet number for the latex particles is smaller than one focosity measured for the other volume fractions. In these fig-
the majority of shear rate@.e., all shear rates smaller than ures, also the flow curves predicted by the model are shown.
approximately 20 s%), ¢,, is chosen equal to 0.627,5]. In both cases they result from one simultaneous fit of the
The distanceR., is chosen equal to 0.9%Ra¢ 3. The model to the experimental data at the different volume frac-
last two parameter$ and n, are unknown and have been tions. The experimental data in Figs. 4 and 5 show the char-
used as fitting parameters. acteristic behavior of the lattices. At low shear rates and for

IIl. EXPERIMENTAL

IV. RESULTS AND DISCUSSION
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FIG. 6. The measured dynamic yield strésbtained from Fig.
FIG. 4. The shear stress of latex la£240 nm,

B ) h 5) is plotted vs the measured elastic modulus. The model calcula-
o=—5.7 uClenr’) measured as a function of the shear rate foryjon are shown as solid symbols connected by a solid line.

several volume fractions. The model results indicated by the solid

lines are calculated for a electrolyte concentration A& and

;_Og;i‘;/cgeln(;?g? %nigz(g )0(')9?‘55(’&4)3)0 l()C).Gll?g,DzA())lg.?ZS()l.quh)e static shear modul_us. In additioq, th(_a curve resulting from
dashed line indicates the transitions to completely disordered fluidPur model ,Calcmat'ons '_S shown in this figure. .

Comparing the experimental results to the theoretical pre-

dictions for latex | in Fig. 4, one observes that the experi-

volume fractions above 8% the viscosity is almost inverselynents at high volume fractions¢(=0.155, 0.178, and

proportional toy, i.e., the shear stress becomes almost inde(-)'zo) are described rather well by the first-order model pre-

. : sented here. At volume fractions below the phase transition
pendent from the shear rate. This behavior has also been . .
observed by Chent al.[32] who defined the constant stress (n¢_0_05, 0.06, and 0.075) the experiments show no yield

found at low shear rates as the “dynamic yield stress.” Be_behawor while our model sill predicts a dynamic yield

low a certain volume fraction the dynamic yield stress dis-Sress This discrepancy is due to the fact that Brownian mo-

appears and the experiments suggest a low shear viscos@)??h's frlloitdtalaen |nt<|)tr?ccort11r;:] I'?hither mi(:gel ffotrhthel\/'s,[?os'ty
plateau o). At high shear rates and high volume fractions € fiuld phase afthouy s regime gfthe electro-

the onset to a high shear viscosity plateay) can be seen. static repulsion no longer dominates the Brownian interac-

The experimental values for the dynamic vyield stresstlons (see Sec. Il A At volume fractions above the phase

dyn_ i E ) transition, the calculated transition from yield behavior to
70 =lim ;_o[y7(7)] can be determined from the curves nigh shear viscosity is sharper than observed in the experi-
shown in Figs. 4 and 5. For latex Il also the static sheaents, This rather sharp edge in the model curves for mod-
modulusG, has been measured by Van der Vastl.[22].  grate and high volume fractions indicates the point at which
In Fig. 6, the dynamic yield stress has been plotted versus thge solid phase melts awdgee Fig. 7. This means that for

shear rates above this transitiGre., below the dashed line

10°
E L e A e e L ]
r 103
102 3
ol 100 [ H0.4
T 7 10l
£ 1000 g 10t Ho.3
= E = _e'_a
L < 100F
101 - H0.2
E = i
102¢ 107 ¢
3 £ 40.1
L Ty A E
PO T G SR B A W R ETH) RN S RRTH WA eI 107k b
10+ 10° 10 10 10° 10! 10 Y B R T T I AR TIT R TR TTT RN ETTY RN ST 0.0
shear rate [s!] 10+ 103 102 101 10° 10t 102
shear rate [s1]
FIG. 5. The shear stress of latex Illa€£195 nm,

o=—4.6 uClcm?) measured as a function of the shear rate for FIG. 7. The suspension viscosity(solid line), the viscosity of
several volume fractions. The model results indicated by the solidhe fluid phase 45, dash-dotted linge and the aggregate volume
lines are calculated for a electrolyte concentration 28 and fraction (¢, dashed lingare plotted as a function of the shear
f=0.4. Volume fractions: {) 0.10, (©) 0.19, (&) 0.30, () rate. The calculation has been performed for latex Il with
0.35. ¢=0.19.
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in Fig. 4) the viscosity is essentially the viscosity of the found by Chen and ZukoskB] and Chow and ZukosKi34]
disordered fluid which is quite well described by our model,who founds=0.035+0.005 and 0.029 0.006, respectively.
while for shear rates below this transitigne., above the In addition, it is observed in Fig. 6 that the scaling behavior
dashed line in Fig. Athe viscosity and yield behavior are is descibed rather well by our model, although in our model
mainly determined by the volume fraction of aggregatesg slightly depends 016,

¢er- For ¢>0.1 the yield behavior predicted by the model  The sensitivity of the calculated flow curves on variations
agrees with the experimental observations. Comparing thg the other parameters has also been investigated. This led
experimental data with the model curves, one observes thas o conclude that our model mainly is sensitive for four
in our model, the solid phase melts down too strongly as &, rameters: the excess electrolyte concentratigrthe Lin-

funct|op of the shear rate fap>0.08. .. demann factore, and the radiusR., for which the yield
In Fig. 5 one observes more or less the same behavior f%rehavior is sensitive: A7 9=3Aa/a and A7ST

a latex Il. Now only volume fractions above the phase tran-"; .~ . .
sition were used and all curves indicate the yield behavior afo — 22 Req/Req, respectively, and the factdr for which

low-shear rates. The predicted stress for the volume fraction§€ high shear viscosity is sensitiv&z../ 7..=2.8Af/f.
0.10, 0.30, and 0.35 describes the experimental results rather Although this is a first attempt to model the shear viscos-
well. However, the calculated values fgr=0.19 are larger ity of a nondilute dispersion of strongly interacting particles,
than the experimental ones. We have fitted the model simufhe model proposed describes the main behavior of the mea-
taneously to all curves by adjusting the electrolyte concensured viscosity as a function of quite well for volume
tration to 25uM. The flow curve, especially the dynamic fractions above the phase transition where the influence of
yield stress, depends rather strongly on the electrolyte corthe Brownian motion is dominated by the repulsion between
centration and a small increase of the electrolyte concentrahe particles. For these volume fractions the observed dy-
tion to 30 uM reduces the dynamic yield stress@+0.19  namic yield behavior can be understood from the volume
by a factor 1.5. So a small pollution of the sample can befraction of ordered domains, while at higher shear rates the
responsible for deviations like this one. ordered domains are broken down and the measured viscos-
One expects the dynamic yield stress to scale linear witlity is that of the disordered fluid phase, which is also rather
the static shear modulyi83,9]. The value predicted by Bus- well described by the model. These conclusions support our
call [33] for this quantity is on the order of magnitude of working hypothesis that an at rest ordering dispersion in
0.01 while Chen and ZukoskB] derived 0.04.The slop8  shear flow can be considered as a suspension of crystallites
obtained from the linear fitrSyn: BGy to our measurements (i.e., domains of ordered matenialispersed in a disordered
is 0.035+0.005. This value is in keeping with the ratios fluid phase.
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