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Shear viscosity of an ordering latex suspension

B. van der Vorst, D. van den Ende,* N. J. J. Aelmans, and J. Mellema
J.M. Burgers Centre, Rheology Group, Faculty of Applied Physics, University of Twente, P.O. Box 217,

7500 AE Enschede, The Netherlands
~Received 17 January 1997!

The shear viscosity of a latex which is ordered at rest is studied as a function of the shear rate and volume
fraction. At low shear rates and for moderate to high volume fractions, the flow curves show dynamic yield
behavior which disappears below a volume fraction of 8%. At high shear rates, the onset to the high shear rate
plateau of the viscosity can be observed. A new model for the shear viscosity for lattices at high volume
fractions is described. This model is based upon theories for the shear viscosity of dilute lattices of Blachford
et al. @J. Phys. Chem.73, 1062~1969!# and Russel@J. Fluid Mech.85, 673~1978!#. In terms of this model, the
ordered latex is broken down under shear flow into ordered domains suspended in a disordered fluid. The larger
the shear rate, the smaller the volume fraction of ordered domains. The experimental results can be described
reasonably well with the model discussed here.@S1063-651X~97!12808-2#

PACS number~s!: 82.70.2y
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I. INTRODUCTION

The rheological behavior of charged colloidal particl
dispersed in an electrolyte has been studied by many aut
over the past two decades. The shear viscosity of these
persions depends strongly on the volume fraction and
excess electrolyte concentration. For dilute dispersions,
influence of the excess electrolyte concentration on the l
shear limit of the viscosity has been studied intensively.
this respect, we can discriminate between three electro
cous effects which have been comprehensively treated
Russel@1–5# and Blachfordet al. @6# among others. The pri
mary effect is caused by the distortion of the diffuse dou
layer of ions surrounding each particle. The secondary ef
is due to the electrostatic repulsion between the partic
The tertiary electroviscous effect, mentioned by Russel
the influence of the intra-particle repulsions on the parti
shape. Since the colloidal dispersions studied in this w
consist of monodisperse charged polystyrene spheres
persed in water, the latter effects is of no interest here. C
sequently, only the primary and the secondary effect are
as electroviscous contributions to the viscosity. These th
ries have been compared to the viscosities measured
Stone-Masui and Watillon@7# and Chanet al. @8# for dilute
suspensions.

The present paper studies the shear viscosity of a no
lute suspension with strongly interacting particles. Ear
experiments on this matter have been performed by C
and Zukoski@9#, Buscall@10#, and Quemada@12#. Theoreti-
cal models have been given, e.g., by Buscall@10# and Que-
mada@12#. These models are based on a semiempirical
pression for the viscosity of hard-sphere suspensions~e.g.,
Krieger-Dougherty formula! describing the volume fraction
dependency of the shear viscosity. The volume fraction
this expression is replaced by an effective hard-sphere
ume fraction which depends on the electrostatic interac
between the particles.

*Corresponding author.
561063-651X/97/56~3!/3119~8!/$10.00
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Here a first attempt is made to describe the shear visco
for nondilute suspensions containing strongly interact
spheres by extrapolating the theories for dilute suspens
mentioned before to the high volume fraction regime. Ho
ever, the microstructure of these suspensions in shear
needs some extra consideration since for high volume f
tions and sufficient low excess electrolyte concentrations
particles order into crystalline lattices at rest. In shear flo
the system can be seen as a quasihomogeneous ‘‘ble
formed by a solid phase coexisting with a fluid pha
@11,12#. If the shear rate is increased the number of dislo
tions or the amount of the disordered phase increases a
expense of the ordered phase. How these ordered and d
dered regions are organized is still an open question. Sin
is impossible, due to multiple scattering, to perform lig
scattering experiments on polystyrene latices with high v
ume fractions (f.0.01), we were unable to obtain results
this way on the microstructure of our own lattices. Oth
techniques like x-ray scattering or neutron scattering do
suffer from this problem but they are not easy to implem
in a viscometer. In order to envisage the microstructure
sheared lattices, we can use scattering experiments
formed by other investigators on similar systems in sh
flow and numerical simulations performed on these disp
sions. The experimental data as well as the numerical res
do not reveal one picture of the microstructure of these s
tems in a shear flow. On the basis of light scattering exp
ments@11,13–15# and neutron scattering experiments@16#,
Ackerson and Clark@15# and Tomita and Van de Ven@11#
concluded that the flow forces the particles to order in h
agonal plates which lie parallel to the shear plane and s
over each other. Experiments of Imhofet al. @17,18# and
Dozier and Chaikin@19# show that the colloidal crysta
breaks up into crystallites which are separated by disorde
material. Here the crystallites gradually melt with increasi
shear rate and eventually the suspension becomes comp
disordered. Also numerical results of Stevens and Robb
@20# indicate a microstructure of solid crystal plates sep
rated by disordered material where the shear is concentra

In this paper, we model our fluid as an ordered suspens
3119 © 1997 The American Physical Society
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3120 56B. van der VORSTet al.
which at rest consists of many crystallites separated by
locations. If a shear is applied to this ordered suspension
flow is most probably concentrated at the dislocation ed
since the particles at these dislocations are more loo
trapped by the potential field of the particle interactions. T
leads us to our working hypothesis that an at-rest orde
dispersion in shear flow can be considered as a suspensi
crystallites or domains~aggregates! of ordered material dis-
persed in a disordered fluid phase~see Fig. 1!. The conse-
quences of this hypothesis on the shear rate dependen
the viscosity are investigated in terms of a microrheologi
model and compared with the experimental observations

This paper is organized as follows: In Sec. II the mod
for the viscosity of a nondilute colloidal dispersion consi
ing of strongly interacting particles is described. In Sec.
the dispersion and setup of the experiments are shortly
scribed. Finally, in Sec. IV the experimental and theoreti
results are discussed.

II. THEORY

Under shear we consider the fluid as a suspension w
consists of disordered material in which the crystallites
aggregates of ordered material are suspended~see Fig. 1!.
Increasing the shear rate causes the aggregates to be
smaller in favor of the disordered material that separates
crystallites. The flow is concentrated in the disordered
fluidlike phase if the penetration depth of the flow field in
the ordered aggregates is small compared to the sizeL of the
aggregates. According to Wiegel@21# the penetration depth
of the flow field into an aggregate is maxim
dmax5Ah0 /(z0C). Here h0 is the viscosity of the solvent
z0 is Stokes’ friction coefficient 6ph0a for a free particle,
andC53f/(4pa3) is the particle number concentration;a
is the radius of a particle. In our case the maximal pene
tion depth of the flow field into the aggregates is appro
mately 100 nm which is more than five times smaller th
the interparticle distance in the lattice so the aggregates
considered as impenetrable.

Conceiving the aggregates as hard spheres, the total s
viscosity of the suspensionh(ġ) can be modeled with the
Krieger-Dougherty expression

FIG. 1. The polystyrene latex modeled as a suspension
spherical aggregates of sizeL ~crystallites! in a fluid phase consist
ing of disordered particles of size 2a.
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h5hfl~ ġ !S 12
fcr~ ġ !

fcr
max D 22.5fcr

max

~1!

in which both the volume fraction of crystalline aggregat
fcr and the shear viscosity of the disordered phasehfl de-

pend on the shear rateġ applied to the suspension. Thes
two quantities will be considered in the next sections.

A. Viscosity of the disordered phase

For a dilute latex the electrostatic force is dominated
the Brownian force and no ordering will occur; also the lo
shear viscosity will be dominated by Brownian interaction
For a nondilute latex at rest the maximum separat
('2af1/3) of the particles is so small that the Brownia
force on the particles is dominated by the electrostatic fo
causing the particles to order in a crystal. In flow, these
dered structures are broken down by hydrodynamic inte
tions. Consequently in our investigations only the hydrod
namic and electrostatic forces have been taken into acco

The shear viscosity of the disordered phase is calcula
from the electrostatic shear stress following Blachfordet al.
@6# and Russel@2#. We start from the force balance on on
particle, omitting inertial effects since the time scale
which these are important is much smaller than the diffus
time scale on which the equation is valid. The total elect
static force on a particle can be reduced to a summation
the electrostatic pair interactions with its nearest neighb
because the Debye screening lengthk21 is smaller than one-
third of the surface to surface distance between two parti
in our latex dispersions@22#.

The electrostatic stress in the suspension can be calcu
by considering a ‘‘collision’’ between two particlesi andk
in the suspension surrounded by many other particles. If
two particles are separated by one or more other partic

the electrostatic interaction,FW ik
I , between the two particles i

screened and it is sufficient to take into account only el
trostatic interactions between nearest neighbors@22#. If,

however, the distance between the two particles,rW ik , be-
comes on the order of the interparticle distanceReq, which is
approximately 2af21/3, or less, they do interact, which wil

contribute to the stress in the suspension. AveragingFW ik
I rW ik

along the collision path and over all possible initial config
rations results in the electrostatic contribution to the stres
the suspension. To calculate the trajectory of particlei when

it collides with particlek the total electrostatic forceFW i
I on

particle i is modeled as the sum of the forceFW ik
I (rW ik) due to

particle k and an average contributionFar̂ ik from the other
nearest neighbor particles

FW i
I5@Fik

I ~rW ik!2Fa# r̂ ik ~2!

with r̂ ik5rW ik /r ik . Fa is determined from the equilibrium
condition at rest

of
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56 3121SHEAR VISCOSITY OF AN ORDERING LATEX SUSPENSION
Fa5 (
j 51,j Þ i , j Þk

Nn

uFW i j
I ~rW i j

eq!u5uFW ik
I ~rW ik

eq!u ~3!

with rW ik
eq5urW i

eq2rWk
equ. Nn is the number of nearest neighbo

andFW i j
I is the electrostatic force on particlei due to particle

j . In a steady shear flow the force balance for particli
during a collision with particlek is under these assumption
given by

FW i
H1FW i

I5OW , ~4!

whereOW is the zero vector. The hydrodynamic forceFW i
H on

particle i is given by

FW i
H5z~vW fl2vW i !, ~5!

wherevW i5drW i /dt is the velocity of the particle,vW fl the fluid
velocity at rW i , andz is the volume-fraction dependent fric
tion factor of the particles. The friction factor is modeled

z56ph~f!a1 f
2pFa

2ae reo

3Di
ka~11ka!2. ~6!

The first term is due to the hydrodynamic friction of the lat
particle in a dispersion of hard spheres. The viscosity in
expression is calculated from the Krieger-Dougherty eq
tion: h(f)5ho(12f/fm)22.5fm. When a latex particle
moves through its solvent, the layer of counterions exerts
additional drag force on the particle. This electrodynam
friction is taken into account by the second term in Eq.~6!.
This term is the low frequency limit of the electrodynam
friction coefficientze(v) as derived by Felderhof and Jon
@23#. Fa is the apparent surface potential andk is the effec-
tive reciprocal Debye length. Both can be calculated fr
the cell model described by Van der Vorstet al. @22#; e reo is
the dielectric constant of the fluid. The only counterions
our model fluid are H1 ions which have a diffusion constan
Di59.531029 m2 s21 and a valencez51. The factorf is a
fit parameter of our model. It is an unknown parameter
the order of unity with which deviations might be correct
stemming from deformations of the spherical double laye
pollution with less mobile ions~Na1 or K 1). The electro-
static force between the two particles is modeled with
expression used by Van der Vorstet al. @22# to describe the
static shear modulus

FW ik
I ~rW !54pe reoFa

2~ka!2e2ka
2kr 11

~2kr !2
e22kreW r ~7!

with 2r the center to center distance between the two p
ticles. Substitution of Eqs.~5! and~7! in Eq. ~4! leads to the
following trajectory equation:

dY

dj
5Y

j

11j2
1

H

sinf0
S Y11

Y2
e2Y2

Y011

Y0
2

e2Y0D ~8!

with Y52kr the dimensionless distance of the particle to
center of the cell,Y05kReq the equilibrium distance
H5@4pe re0Fa

2(ka)2e2ka2k#/(zġ) and j5cotu. H times
is
-

n
c

n

r

e

r-

e

the term in brackets represents the ratio between the ele
static interaction force between the two particles and the
drodynamic force upon the particles. A spherical coordin
system has been used in which the origin coincides with
center of mass of the two particles~see Fig. 2!. The flow
direction is along thez axis while the gradient is directe
along they axis. This approach is similar to that of Blachfor
et al. @6# except for a little difference in the coordinate sy
tem. The trajectories of both particles can be calculated
numerical integration of Eq.~8! using a Runge-Kutta inte
gration scheme.

We are interested in the~shear! stress componentTyz gen-
erated by all the colliding pairs. The contribution of the ele
trostatic interaction to this stress component can be ca
lated with @24#

Tyz~ t !5E E E ~qyFz
I !F~qW ,t;pW ,t! d3p d3q dt. ~9!

F(qW ,t;pW ,t) d3p d3q dt is defined as the number density
pairs at timet with a connection vector ind3q aroundqW
which were created betweent2t2dt and t2t with a con-
nection vector ind3p around pW . Assuming a steady stat
situation, the only time dependence is the lifetime of a co
nection. The distributionF can be written as a product o
three contributions

F~qW ,t;pW ,t! d3p d3q dt5$ṅcr d3p dt%$Psurv~pW ,t!%

3$Ptrans~qW ;pW ,t! d3q%. ~10!

ṅcr d3p dt is the number density of pairs created in a vo
ume d3p around pW within a period dt. Psurv(pW ,t) is the
survival probability of a pair created atpW after a periodt and
Ptrans(qW ;pW ,t) is the probability that a pair created ind3p

aroundpW translates tod3q aroundqW during a period of time
t, given it still exists. The number of created connections

FIG. 2. The collision between two charged polystyrene la
particles in a shear flow.
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3122 56B. van der VORSTet al.
determined by the number of particles flowing into a sph
with radiusReq around the central particle:

ṅcr d3p dt5d~p2Req!
1

2
n2ġp3sinf0cosu0

3sin2u0 dp du0 df0 dt. ~11!

Here d3p is written asp2sinu0 du0 df0 dp, n is the number
density of particles, andd is the Dirac function. Because th
Brownian motion of the particles is omitted the trajector
of the colliding particles are fully deterministic. By definin
rW(pW ,t) as the pair vector which has been created atpW a time
t before, the translation probability can be written as

Ptrans~qW ;pW ,t!5d„qW 22rW~pW ,t!…. ~12!

The survival probability can be written as

Psurv~pW ,t!5H 1 if t,t l ~pW !,

0 if t.t l ~pW !,
~13!

where t l (pW ) is the time elapsed when a pair which w
created with connection vectorpW is broken up. In this case
t l is the time the interacting pair remains within a distan
Req from each other. By substitution of Eqs.~11!–~13!, and
~10! into ~9! and carrying out the integration over theqW space
and overp one deduces

Tyz5
A

2k
n2ġ~Req!

3E
0

p

df0E
2`

0

dj0E
j0

jm
dj

3S 11Y

Y
e2Y

j

11j2D S j0

11j0
2D ~11j0

2!5/2sinf0

~14!

with j05cotu0, jm5cotum, and A54pe re0Fa
2(ka)2e2ka.

The particle pair is created under an angleu0 at timet50 on
the cell surfaceY5kReq. After a timet l the pair breaks up
at um with Y5kReq again. The trajectory of the particle i
this equationY(j,f0), j(j0 ,f0 ,ġt) is calculated from Eq.
~8!.

B. The volume fraction of the ordered phase

In the proposed model, the ordered phase consists
spherical crystallites of sizeL that occupy a fractionfcr of
the total volume. The size and volume fraction are de
mined by breakup and coalescence processes.

The breakup of crystallites is described with a criteri
obtained from fracture mechanics. It states that a deform
crystal will break up when the elastic energy stored in
deformed crystallite exceeds the energy needed to crea
new free surface in the crystallite@25#:

S2

2G0
V>EsS. ~15!

Here S is the shear stress in the crystal,G0 is the shear
modulus of the crystal,V is the volume of a crystallite,Es is
e

e

of

r-

d
e

a

the breakup energy per unit area needed to create a
surface in the crystallite, andS is the created free surface. I
this expression, it is not directly clear howEs depends on the
crystal properties. However, an expression for this ene
can be found by identifying the energy needed to creat
free surface in a crystallite with the energy needed to ex
all the particles in this surface from their lattice sites to
unbounded state. The energy to excite one particle can
found from the melting criterion of Lindemann@26#, which
states that if̂ d2&>a2Rcr

2 , where^d2& is the mean-squared
displacement of a particle from its lattice position,a is the
Lindemann factor andRcr is the lattice parameter, the pa
ticle can no longer be considered as bounded to a lattice
The minimum energy needed to excite one particle to t
unbounded state is equal to12 ka2Rcr

2 , wherek5¹2C with
C the total interaction energy of the particle. In our case, t
melting energy is realized by both the Brownian ener
(3kBT/2) and the energy due to the shearing of the crystal
this respect, the minimum energy which the shear flow ha
provide in order to excite one particle to the unbounded s
divided by the specific shear surface of one parti
('pRcr

2 ) becomes

Es[
k~a2Rcr

2 2d0
2!

2pRcr
2

~16!

with kd0
2[3kBT. By substitution of Eq.~16! in Eq. ~15! with

V'L3 and S'L2, the following breakup criterion can b
derived for a crystallite: no breakup occurs as long as

S2

2G0
L<

k~a2Rcr
2 2d0

2!

2pRcr
2

. ~17!

In this way, the upperbound size of the crystallites in a sh
flow is determined. The lower bound onL can be derived
from the coalescence of crystallites which is induced by
shear flow. An expression for the minimum size of the cry
tallites below which they do not coalesce is derived by co
paring the shear force and the lubrication force on two c
liding aggregates

6phL2ġ

4
<

6phflL
3ġ

16h
, ~18!

where the left-hand side of the equation represents the s
force on a spherical crystallite colliding with another sphe
of size L, and the right-hand side represents the repuls
lubrication force along the connecting vector between t
crystallites with radiusL/2 that approach each other with
velocity Lġ @5#. The velocity difference between the diso
dered phase and a stationary aggregate is estimate
Lġ/2; h is the shear viscosity of the total suspension,hfl is
the viscosity of the disordered phase between the aggreg
and h is the surface to surface distance between the
aggregates. The minimum distancehmin is determined from
Eq. ~18!. If this distance is smaller than the average sepa
tion distance between the particles, all of the disorde
phase is squeezed out of the gap, the surfaces of the
aggregates make contact and the two crystallites coale
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56 3123SHEAR VISCOSITY OF AN ORDERING LATEX SUSPENSION
The shear melting criterion~17! together with the shear coa
lescence criterion~18! determines the range of sizes f
which the aggregates are stable at a certain aggregate vo
fraction,

4hRcr

hfl
<L<

2G0

S2

k~a2Rcr
2 2d0

2!

2pRcr
2

. ~19!

C. Numerical implementation

Since the viscosity of the fluid phase is shear rate dep
dent, the average shear rate in the fluid phase has to
known. It can be calculated from the observation that
energy dissipation in the total suspension equals that in
fluid phase since no energy is dissipated in the hard-sp
aggregates:

ġfl5ġA h

hfl

Vtot

Vfl
5ġS 12

fcr

fcr
maxD 2~5/4!fcr

max

~12fcr!
21/2.

~20!

Here Vtot is the suspension volume andVfl is the volume
occupied by the fluid phase. The last step is performed
substitution of Eq.~1!. In the stationary case the breaku
process is equilibrated by the coalescence of crystallites.
assume that the suspension adopts the maximum vol
fraction of aggregates and the inequality signs in Eq.~19!
have been replaced by equality signs. This results in a sec
expression forh(ġ,f)

4hRcr

hfl
5

2G0

~hġ!2

k~a2Rcr
2 2d0

2!

2pRcr
2

, ~21!

wherehġ is substituted for the shear stresss on the aggre-
gates. From Eqs.~1!, ~14!, ~20!, and ~21! the suspension
viscosity is calculated using a numerical scheme given
Fig. 3.

Besidesġ, f, the particle radiusa and the surface charg
density s the viscosity model contains the paramete
fcr

max, k, G0, d0, Rcr , Req, f , fm , a, andnb . The maximum
packing fraction of crystallitesfcr

max in Eq. ~1! is chosen
equal to 0.71. This is the maximum packing fraction deriv
from experiments on the shear viscosity of hard-sphere
pensions at high shear rates@27,5#. The distanceRcr is cho-
sen equal to 0.90432af21/3, which is the distance in a fcc
lattice. The values fork andG0, which are both functions o
(f, a, s, andnb), are obtained from calculations describ
by Van der Vorstet al. @22# and d0

253kBT/k. The Linde-
mann factora is estimated to be 0.2 which is close to th
range of experimental and theoretical results found for
factor @28,29#. Besides byG0 the viscosity of the fluid phase
is determined by three parameters:Req, f , andfm . Since the
Peclet number for the latex particles is smaller than one
the majority of shear rates~i.e., all shear rates smaller tha
approximately 20 s21), fm is chosen equal to 0.63@27,5#.
The distanceReq is chosen equal to 0.97432af21/3. The
last two parametersf and nb are unknown and have bee
used as fitting parameters.
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III. EXPERIMENTAL

In the experimental part of this investigation, we used
monodisperse polystyrene latex which has been synthes
following the method described by Goodwinet al. @30#. A
comprehensive treatment of the synthesis of lattices has b
given by Hearnet al. @31#. The purification and characteriza
tion of the samples have been described in detail by Van
Vorst et al. @22#. Two batches of polystyrene latex have be
used with the following characteristics: For latex I the pa
ticle radius is 240 nm and the surface charge density
25.7 mC/cm2; for latex II the particle radius is 195 nm an
the surface charge density is24.6 mC/cm2. The electrolyte
concentration of the latex dispersions used in our exp
ments has been reduced with an ion-exchange resin~no ex-
cess electrolyte was added to the dispersions after this re
tion! and the electrolyte concentration is estimated to be
mM @22#. The volume fractions of the studied latex dispe
sions vary between 0.05 and 0.35.

The viscometric measurements on polystyrene latti
have been performed on a Contraves LS 40 rheometer w
concentric cylinder geometry, a vapor lock, and a guard ri
For the geometry used the shear rate can be varied betw
0.001 and 100 s21 and shear stresses can be measured wi
the range of 0.001 to 5 Pa.

IV. RESULTS AND DISCUSSION

The measurements shown in Figs. 4 and 5 are avera
over at least three flow curves. These curves reprodu
within 50%. The error bars shown in Fig. 4 for a volum
fraction of 0.155 are representative for the errors in the v
cosity measured for the other volume fractions. In these
ures, also the flow curves predicted by the model are sho
In both cases they result from one simultaneous fit of
model to the experimental data at the different volume fr
tions. The experimental data in Figs. 4 and 5 show the ch
acteristic behavior of the lattices. At low shear rates and

FIG. 3. Calculation scheme ofh(ġ).
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3124 56B. van der VORSTet al.
volume fractions above 8% the viscosity is almost inverse
proportional toġ, i.e., the shear stress becomes almost ind
pendent from the shear rate. This behavior has also be
observed by Chenet al. @32# who defined the constant stress
found at low shear rates as the ‘‘dynamic yield stress.’’ Be
low a certain volume fraction the dynamic yield stress dis
appears and the experiments suggest a low shear visco
plateau (h0). At high shear rates and high volume fraction
the onset to a high shear viscosity plateau (h`) can be seen.
The experimental values for the dynamic yield stres
t0

dyn5 lim ġ→0@ ġh(ġ)# can be determined from the curves
shown in Figs. 4 and 5. For latex II also the static she
modulusG0 has been measured by Van der Vorstet al. @22#.
In Fig. 6, the dynamic yield stress has been plotted versus

FIG. 4. The shear stress of latex I (a5240 nm,
s525.7 mC/cm2) measured as a function of the shear rate fo
several volume fractions. The model results indicated by the so
lines are calculated for a electrolyte concentration 12mM and
f 50.8. Volume fractions:~1! 0.05, (n) 0.06, (s) 0.075, (h)
0.09, (d) 0.10, (,) 0.125, (L) 0.155, (h) 0.178, (n) 0.20. The
dashed line indicates the transitions to completely disordered flu

FIG. 5. The shear stress of latex II (a5195 nm,
s524.6 mC/cm2) measured as a function of the shear rate fo
several volume fractions. The model results indicated by the so
lines are calculated for a electrolyte concentration 25mM and
f 50.4. Volume fractions: (,) 0.10, (s) 0.19, (n) 0.30, (h)
0.35.
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static shear modulus. In addition, the curve resulting fro
our model calculations is shown in this figure.

Comparing the experimental results to the theoretical pr
dictions for latex I in Fig. 4, one observes that the exper
ments at high volume fractions (f50.155, 0.178, and
0.20) are described rather well by the first-order model pr
sented here. At volume fractions below the phase transiti
(f50.05, 0.06, and 0.075) the experiments show no yie
behavior while our model still predicts a dynamic yield
stress. This discrepancy is due to the fact that Brownian m
tion is not taken into account in the model for the viscosit
of the fluid phase although in this regime off the electro-
static repulsion no longer dominates the Brownian intera
tions ~see Sec. II A!. At volume fractions above the phase
transition, the calculated transition from yield behavior t
high shear viscosity is sharper than observed in the expe
ments. This rather sharp edge in the model curves for mo
erate and high volume fractions indicates the point at whic
the solid phase melts away~see Fig. 7!. This means that for
shear rates above this transition~i.e., below the dashed line

r
id

d.

r
id

FIG. 6. The measured dynamic yield stress~obtained from Fig.
5! is plotted vs the measured elastic modulus. The model calcu
tions are shown as solid symbols connected by a solid line.

FIG. 7. The suspension viscosity (h, solid line!, the viscosity of
the fluid phase (hfl , dash-dotted line!, and the aggregate volume
fraction (fcr , dashed line! are plotted as a function of the shea
rate. The calculation has been performed for latex II wit
f50.19.
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56 3125SHEAR VISCOSITY OF AN ORDERING LATEX SUSPENSION
in Fig. 4! the viscosity is essentially the viscosity of th
disordered fluid which is quite well described by our mod
while for shear rates below this transition~i.e., above the
dashed line in Fig. 4! the viscosity and yield behavior ar
mainly determined by the volume fraction of aggrega
fcr . For f.0.1 the yield behavior predicted by the mod
agrees with the experimental observations. Comparing
experimental data with the model curves, one observes
in our model, the solid phase melts down too strongly a
function of the shear rate forf.0.08.

In Fig. 5 one observes more or less the same behavio
a latex II. Now only volume fractions above the phase tra
sition were used and all curves indicate the yield behavio
low-shear rates. The predicted stress for the volume fract
0.10, 0.30, and 0.35 describes the experimental results ra
well. However, the calculated values forf50.19 are larger
than the experimental ones. We have fitted the model sim
taneously to all curves by adjusting the electrolyte conc
tration to 25mM. The flow curve, especially the dynam
yield stress, depends rather strongly on the electrolyte c
centration and a small increase of the electrolyte concen
tion to 30mM reduces the dynamic yield stress atf50.19
by a factor 1.5. So a small pollution of the sample can
responsible for deviations like this one.

One expects the dynamic yield stress to scale linear w
the static shear modulus@33,9#. The value predicted by Bus
call @33# for this quantity is on the order of magnitude
0.01 while Chen and Zukoski@9# derived 0.04.The slopeb
obtained from the linear fitt0

dyn5bG0 to our measurement
is 0.03560.005. This value is in keeping with the ratio
n-

r-

ci.
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found by Chen and Zukoski@9# and Chow and Zukoski@34#
who foundb50.03560.005 and 0.02960.006, respectively.
In addition, it is observed in Fig. 6 that the scaling behav
is descibed rather well by our model, although in our mo
b slightly depends onG0.

The sensitivity of the calculated flow curves on variatio
in the other parameters has also been investigated. This
us to conclude that our model mainly is sensitive for fo
parameters: the excess electrolyte concentrationnb , the Lin-
demann factora, and the radiusReq for which the yield
behavior is sensitive:Dt0

dyn/t0
dyn53Da/a and Dt0

dyn/
t0

dyn55DReq/Req, respectively, and the factorf for which
the high shear viscosity is sensitive:Dh` /h`52.5D f / f .

Although this is a first attempt to model the shear visc
ity of a nondilute dispersion of strongly interacting particle
the model proposed describes the main behavior of the m

sured viscosity as a function ofġ quite well for volume
fractions above the phase transition where the influence
the Brownian motion is dominated by the repulsion betwe
the particles. For these volume fractions the observed
namic yield behavior can be understood from the volu
fraction of ordered domains, while at higher shear rates
ordered domains are broken down and the measured vis
ity is that of the disordered fluid phase, which is also rath
well described by the model. These conclusions support
working hypothesis that an at rest ordering dispersion
shear flow can be considered as a suspension of crysta
~i.e., domains of ordered material! dispersed in a disordere
fluid phase.
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